

Solar System Assessment for Hermel

Done by: Ali Dawi Jaafar sirhan Solar Irradiation in Lebanon

Yearly Solar Irradiation in KWh/m2

2696.62	2420.53	2144.45	1868.36	1592.28

Detailed Description for the land

Geo-Location for Hermel $\mathbf{\Theta}$

Hermel is Located in Baalbak-Hermel Governorate and specifically in Hermel District.

Elevation in Hermel

16.6 - 21.8

21.8 - 26.5

26.5 - 86

8

Ν

HillShade in Hermel

HillShade

Land Use in Hermel

- Scale: 1/20,000
- Done at year 2017
- Minimal Mapable Unit = 10,000 m2

Source: CNRS

Geological Study for Hermel

Cailloutis

Geology Type

Ν

Hazardeous in Hermel

Hazard Range

No Hazard Very Low Low Moderate High Very High

Source: CNRS

14

Ν

Vegetation Density Study

A study (Vegetation Density) is done for the forest to decide if we can replace the trees in the forest with solar farms and replant those trees in the perimeter of the selected area.

Vegetation Density Process:

NDVI for Harbata is Calculated from a Satellite image (Sentinel-2).

Classification for NDVI result.

Results

The decision of selecting Solar Farms depends on two kinds of conditions :

Negotiable Conditions

Intersection Area

Total area = 23.9 km^2

21

Ν

Site Identification

Elevation Analysis for each Site

Slope Analysis for each Site

Non-negotiable Conditions

HillShade in each Site

HillShade

Hazardeous Area in each Site

Note

35

Ν

Analysis of Resultant Sites

Unique Process for calculating Performance value:

Performance Evaluation

Calculation of MW value in Site A in Terabase Tool

terabase.energy

Calculation of MW value in Site B in Terabase Tool

terabase, energy

V 3.0 Hello Jaafarserh 💌

Calculation of MW value in Site C in Terabase Tool

terabase.energy

Calculation of MW value in Site D in Terabase Tool

terabase.energy

Jaafarserh_2019-09-05_01 Result: 💙 1

Module Manufacturer:

Add Simulation

Simulations 1

Racking:

Module Type:

Module SKU:

Module Rating: Inverter Manufacturer:

Inverter Model 1: Inverter Model 2: Weather File ID:

Ground Albedo:

Project Lifespan:

Financial/EPC Cost Profile:

EPC Cost Roadamap Date:

Losses:

Hermel_D

V 3.0 Hello Jaafarserh 💌

♦

蔐

KI

Ô

â

Calculation of MW value in Site E in Terabase Tool

terabase.energy

Calculation of MW value in Site F in Terabase Tool

terabase.energy

Calculation of MW value in Site G in Terabase Tool

terabase.energy

